

One Sensor, Three Displays: A Comparison of Tactile Rendering from a BioTac Sensor

One Sensor: SynTouch BioTac

This biomimetic tactile sensor mimics the physical and sensory capabilities of the human fingertip. Developed for prosthetics, it includes:

- Rigid core patterned with electrodes.
- Flexible rubber skin filled with conductive fluid.
- Internal pressure sensor
- Temperature and vibration sensors (not used here) \bullet

Calibr

 \bullet

The Bio cutanec the Che servos Phidget While all poss the ser with the sensati

Jeremy D. Brown^{*}, Mary Ibrahim^{*}, Elyse D. Z. Chase^{*}, Claudio Pacchierotti^o, and Katherine J. Kuchenbecker^{*} * Haptics Group, GRASP Lab, University of Pennsylvania ° Dept. of Advanced Robotics, Istituto Italiano di Tecnologia (IIT)

Rendering System Overview

Rather than a physical or kinematic model, we use a data-driven algorithm to allow the user to feel what the BioTac is feeling in real time.

- The *BioTac* sensor, which measures fingertip deformations and pressure. The Cutaneous Displays, which apply deformations to the user's finger.
 - An algorithm that maps measured BioTac sensations to appropriate motor commands for the
 - selected cutaneous display by finding the closest sensation that occurred during calibration.

ation Setup	We cons
oTac is mounted inside the Rigid Platform	display
ous display. It is connected to the computer via	oth
eetah high-speed SPI adaptor. The sub-micro	literature
on the device are powered and controlled by the	from 3I
t board, which is also connected to the computer.	mechan
in this configuration, the display was moved to	micro
sible configurations (as allowed and regulated by	num
vos). Data from the BioTac was recorded along	freedom (E
e corresponding motor angles to characterize the	tacti
ons this device can create.	fingertip.

Acknowledgments

This research was supported by a Technology Research Grant from Intuitive Surgical, Inc.

Three Displays

structed the three fingertip ys shown at right based on her designs reported in the . They are all constructed D-printed plastic, common ical components, and subo servos. They vary in the ber and type of degrees of DoF) available for creating ile sensations on the user's fingertip. Which feels best to you?

Tilting Plates (TP)

Rigid Platform (RP)

Variable Compliance Platform (VCP)